
Gli algoritmi combinano collaborative filtering (comportamenti simili tra utenti), content-based filtering (attributi di genere, regista, interpreti, durata, tono) e modelli sequenziali basati su reti neurali (transformer) che catturano l’evoluzione dei gusti nel tempo.
L’intelligenza artificiale valuta anche fattori contestuali – ora del giorno, dispositivo, localizzazione, trend social – per proporre il contenuto giusto al momento giusto.
Vantaggi delle piattaforme di streaming con AI
- Esperienza utente più coinvolgente: minore tempo di ricerca, maggiore tempo di visione/ascolto.
- Tasso di abbandono in calo: i suggerimenti pertinenti riducono la cancellazione degli abbonamenti.
- Monetizzazione migliorata: pubblicità e upselling mirati aumentano l’ARPU.
- Scoperta di nicchie: l’AI porta alla luce titoli di catalogo che altrimenti resterebbero invisibili.
- Produzione data-driven: insight predittivi guidano investimenti in originali e licenze.

Figure professionali coinvolte
- Machine learning engineer: sviluppa e addestra i modelli di raccomandazione.
- Data scientist: analizza pattern di consumo e segmenta la user base.
- MLOps specialist: automatizza deploy e monitoraggio dei modelli in tempo reale.
- UX researcher: testa l’impatto dei suggerimenti sull’esperienza utente.
- Content strategist: usa gli insight AI per pianificare acquisizioni e produzioni.
Esempi e trend 2025
Netflix ha integrato modelli basati su transformer che riducono del 30 % il tempo di scelta dell’utente.
Spotify ha lanciato DJ AI, una voce sintetica che introduce brani e commenta in diretta le preferenze personali.
Prime Video, grazie all’acquisizione di MGM, usa algoritmi proprietari per abbinare franchise classici ai nuovi orientamenti demografici.
Sul fronte europeo, la piattaforma Arte.tv sperimenta raccomandazioni contextual-aware che uniscono contenuti culturali e notizie locali.
Con l’aumento della concorrenza nello streaming e il costo crescente dei contenuti originali, la personalizzazione basata su AI diventa un vantaggio competitivo chiave. Migliorare la pertinenza dei suggerimenti significa utenti più soddisfatti, maggiore fidelizzazione e migliori ritorni sugli investimenti in catalogo.
AssoInnovatori APS accompagna media company e provider OTT nell’adozione di motori di raccomandazione all’avanguardia, dalla definizione della strategia dati al deployment su scala.

Nuovi catalizzatori: come aumentare l’efficienza dei processi chimici e ridurre il consumo energetico

Gabbie galleggianti avanzate: allevamento in mare aperto con minore impatto costiero

Calcolo ai margini: infrastrutture vicine all’utente per prestazioni più rapide

Software di gestione della catena di fornitura basati su intelligenza artificiale: percorsi ottimizzati e logistica più efficiente
